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Abstract—Localizing concurrency faults that occur in produc-
tion is hard because, (1) detailed field data, such as user input,
file content and interleaving schedule, may not be available to
developers to reproduce the failure; (2) it is often impractical to
assume the availability of multiple failing executions to localize
the faults using existing techniques; (3) it is challenging to search
for buggy locations in an application given limited runtime data;
and, (4) concurrency failures at the system level often involve
multiple processes or event handlers (e.g., software signals), which
cannot be handled by existing tools for diagnosing intra-process
(thread-level) failures. To address these problems, we present
SCMiner, a practical online bug diagnosis tool to help developers
understand how a system-level concurrency fault happens based
on the logs collected by the default system audit tools. SCMiner
achieves online bug diagnosis to obviate the need for offline bug
reproduction. SCMiner does not require code instrumentation
on the production system or rely on the assumption of the
availability of multiple failing executions. Specifically, after the
system call traces are collected, SCMiner uses data mining and
statistical anomaly detection techniques to identify the failure-
inducing system call sequences. It then maps each abnormal
sequence to specific application functions. We have conducted
an empirical study on 19 real-world benchmarks. The results
show that SCMiner is both effective and efficient at localizing
system-level concurrency faults.

I. INTRODUCTION

Due to the worldwide spread of multi-core architecture, con-
current systems are becoming more pervasive. Debugging con-
current programs is difficult because of the non-deterministic
behavior and the specific sequences of interleaving in the
execution flow. It often takes a tremendous amount of time
and effort to reproduce and localize concurrency faults [1].

A concurrency fault may occur either during testing or
in the production environment. If the failure occurs in pro-
duction, developers often have to diagnose it in a different
(debugging) environment to identify the root cause. However,
this is challenging primarily because a program can behave
differently in a different environment for each execution,
especially for a concurrent system with non-deterministic
behaviors. In addition, customers may not be willing to share
their inputs for being used to reproduce failures due to
privacy concerns. Therefore, it is hard to apply existing offline
debugging tools [2]–[4] to diagnose concurrency failures that
cannot be reproduced outside the production environment.
While previous research [2], [5]–[12] have been conducted
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to help developers in debugging concurrency faults, it takes
advantage of fine-grained logging for deterministic record-and-
replay, which is infeasible in the production environment due
to the unbearable performance overhead.

To relieve the burden of debugging, there has been some
research on analyzing the runtime information and automat-
ically localize faults [13]–[16]. For example, Falcon [14]
collects both passing and failing execution traces by instru-
menting each memory access of a concurrent program. It
then uses statistical analysis to rank interleaving patterns
involving the memory accesses. This approach is intended
to be used in the pre-deployment environment because of
the heavy-weighted instrumentation. Cooperative Concurrent
bug Isolation (CCI) [13] leverages statistical debugging and
views interleavings as predicates, which are collected at the
runtime and analyzed to find the location of the concurrency
fault. CCI induces less overhead than Falcon but still requires
code instrumentation on the predicates. Therefore, the two
approaches can be impractical for being used in the produc-
tion environment. In addition, both Falcon and CCI require
multiple failed and passed runs to perform the statistical
analysis. However, this assumption often does not hold in the
production environment – it is difficult to obtain multiple failed
runs because a concurrency fault often manifests itself under
specific interleavings and inputs [17].

In this work, we propose SCMiner, a practical online failure
diagnosis tool to help developers understand why a concur-
rency failure occurs in production and localizes the cause of
the failure in specific application functions. SCMiner focuses
on inter-process concurrency faults, where multiple operating-
system components (e.g., processes, software signals, and
interrupts) incorrectly share resources [18]. The main differ-
ence between an inter-process (system-level) concurrency fault
and an intra-process (thread-level) concurrency fault is that a
system-level concurrency fault corrupts the persistent storage
and the other system-wide resources, which can crash the
entire system; whereas a thread-level concurrency fault often
corrupts the volatile memory within a process [17]. Research
has shown that more than 73% of the race conditions reported
in the Linux distributions were system-level races [11].

SCMiner works as follows. When an anomaly (failure) is
discovered by the user, SCMiner is triggered to perform online
fault localization that outputs a list of abnormal system call
sequences and their associated application functions ranked in
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terms of their likelihood of causing the failure. To achieve
this goal, SCMiner analyzes a window of recent system calls.
The rationale behind our approach is twofold. First, a system
call trace can be easily collected via system audit tools [19]
in production (e.g., cloud computing infrastructures) with low
overhead (19%). Second, system-level concurrency failures are
often caused by incorrect synchronizations of system calls on
shared resources between two application processes. There-
fore, we can detect buggy locations by monitoring system
calls. However, it is challenging to identify the abnormal
system call sequences from a trace potentially containing
millions of system calls. Even if the sequences are identified,
a modern server system typically consists of tens of thousands
of functions – mapping a sequence to specific functions in the
programs is a non-trivial task.

To address the above challenges, SCMiner is designed to
have two major phases. In the first phase, SCMiner uses prin-
cipal component analysis (PCA) – an unsupervised learning
approach [20] to identify abnormal system call sequences.
Since the number of system calls in the trace can be enormous,
SCMiner splits the trace into a list of execution segments and
generates a feature vector representation for each segment,
where each element in the vector is a system call sequence.
The segments together with their feature vectors are used to
perform PCA for identifying abnormal system call sequences.
PCA is efficient because its runtime is linear with the number
of vectors so the detection can scale to large traces.

In the second phase, SCMiner maps each abnormal se-
quence to specific application functions. Since SCMiner does
not assume the availability of source code, it is impossible to
use static analysis to link system calls to application functions.
Instead, SCMiner obtains multiple system call traces outside
the production environment by using binary instrumentation
for building a map between system calls and function names.
However, Due to inconsistencies between production and non-
production environment and the lack of inputs, an exact match-
ing is almost impossible. To address this problem, SCMiner
uses frequent pattern mining to extract the frequently executed
system calls from each function as a function signature. The
function signatures can serve as a high-level matching to detect
and rank a list of functions that potentially map to an abnormal
system call sequence.

SCMiner has several distinguishing features, which make it
more advantageous over existing approaches. First, SCMiner
does not require developers to reproduce bugs on their side to
achieve fault localization. Second, SCMiner uses the default
auditd [19] daemon in Linux and does not require heavy
program instrumentation, which makes the tool transparent and
practical for production use. Third, existing techniques often
require multiple failing and passing executions to localize
faults [6], but it is hard to collect multiple failing execu-
tions especially for concurrent programs. Instead, SCMiner
only assumes the existence of one failing system call trace
generated by the auditd daemon. Finally, SCMiner can capture
the buggy functions for inter-process failures, whereas existing
techniques [6], [15], [21], [22] focus on intra-process failures.

47=rcvmsg, 59 = execve, 1 = write, 2 = open, 3= close.

Figure 1. A partial system call trace

To evaluate SCMiner, we conducted an empirical study on
19 applications with known real-world concurrency failures.
Our results show that SCMiner effectively identifies the ab-
normal system call sequences and their associated application
functions leading to the concurrency failures. We also found
that the use of optimization and function signature techniques
can improve the effectiveness and efficiency of SCMiner.
Finally, we found that SCMiner was highly robust in handling
system call traces with different sizes. Overall, we consider
these results to be strong and they indicate that SCMiner could
be a useful approach for helping developers to automatically
localize system-level concurrency failures in production given
an arbitrarily-sized system call trace.

In summary, this paper makes the following contributions:
• We propose SCMiner, the first fully automated tool for

fault localization in multi-process applications.
• We implement SCMiner and conduct an empirical study

to demonstrate its effectiveness and efficiency on real-
world Linux applications [23].

II. BACKGROUND AND MOTIVATION

In this section, we first define our problem and then show a
motivating example. We also discuss the Principle Component
Analysis (PCA) briefly.

A. Problem Statement

We define the production-level fault localization in multi-
process applications as follows. Given the binaries of a set
of Processes under Debugging (PuDs) and system call traces
generated by these PuDs from the system built-in auditd
daemon, we compute a short system call sequence S leading
to the failure and the associated the application functions F
of the system calls in S.

We assume that a concurrent system consists of a set of
processes {P1. . .Pm} and a set of software signals {S1. . .Sn}.
Each process may create multiple threads, but for ease of
presentation, we focus only on the process-level concurrency
failure in this work while assuming each process has one
thread. A failing process PF is a process that generates the
failure (or anomaly).

A system call trace contains a sequence of system calls gen-
erated from all applications running on the system. Each entry
in the trace includes system call number, process ID, process
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name, parent process ID, resource name, inode number, and
execution command parameters. Each system call number is
mapped to a specific system call name, which can be obtained
from the system call table [24].

System-level concurrency faults. A system-level concurrency
fault occurs when multiple processes, signals, or interrupts
access a system-wide resource (e.g., file, device, etc.) without
proper synchronization [25]. Such resources are often accessed
through system calls. Thus, handling system-level concurrency
fault requires the modeling of read/write effects and synchro-
nization operations involving system calls. For example, the
lstat system call on file f reads the metadata of f . The
clone system call creates a new process inode under the
/proc directory (write). Synchronization operations control
process interactions through kernel process scheduler. Com-
mon process-level synchronization primitives include fork,
wait, exit, pipe, and signal.

B. A Motivating Example

Debian - 283702 [26] is a real-world bug in bash version
3.0-10. Bash is an intuitive and flexible standard GNU
shell for common users [27]. It keeps a history of executed
commands in a history file so that users can easily view
the commands that are recently executed. However, problem
occurs when multiple bash shells execute concurrently and
corrupts the shell history file.

Figure 1 shows a piece of system call trace recorded by
Linux auditd [19]. The full trace contains around 3,000K
system calls from 31 processes recorded within 30 minutes
while bash was actively running. To simplify presentation, we
show system call number, process ID, process name, resource
name, and inode number. The trace can grow quickly depend-
ing on how users interact with the shell and the behaviors of
other programs running in the system.

When applying SCMiner to diagnosing the bug generated
by bash, the goal is to identify abnormal system call se-
quences leading to the concurrency failure and their associated
application functions. In Figure 1, the system call sequence
(the grey area) <open(file), write(file), write(file)> from two
different bash processes indicates the root cause of the failure.
When one bash process (pid #11589) opens bash-3.0/history
file before writing to it, another bash process (pid #11587)
opens this file too and writes to it. The failed execution
produces only one history message, whereas two messages are
expected from the two processes. This is because the second
process overwrites the message generated by the first process.
The abnormal system call sequence is then mapped to the
application functions, where the root cause is stemming from
the function history_do_write in the bash application.
This function is responsible for reading and writing the bash
history file.

Challenges. In practice, it is difficult to localize the root
cause of abnormal system call sequence and the associated
application from only system call traces. The first challenge is
to identify the processes involved in the erroneous execution.

In the above example, only the bash processes are actually
relevant. Therefore, we need to quickly weed out irrelevant
processes. Moreover, in some cases, the failing process might
not be the process that contains the bug. A bug in one process
may propagate to another process (e.g., when a corrupted file
generated by bash is accessed by a cat process and it is the
cat process that reports the error). The second challenge is
that a system call trace can easily become massive. Identifying
the abnormal system call sequences are difficult especially in
the absence of multiple failed executions, where existing fault
localization techniques [13], [14] cannot be applied. Third,
even if the abnormal system call sequences are identified,
searching the buggy functions associated with them among the
large number functions in the target application is challenging.
For example, the bash program contains 456 functions. Since
the Linux system has only 33 system calls and a sequence
could appear in many functions, an exact match between the
system call names and the abnormal system call sequences
could return a number of irrelevant functions.

C. Principal Component Analysis

Principal component analysis (PCA) analyzes a data matrix
(X) where each row is an observation and each column is a
feature. The data points in X are described by several inter-
correlated quantitative dependent variables (features) [28]. If
we have data with a large number of features, some might
be correlated. The correlation between features can cause
redundancies in the information. Therefore, in order to reduce
the computational cost and complexity, we can use PCA to
transform the original features into their independent, linear
combinations (PCs) [29]. For example, in Figure 2a, we
displayed a 3-dimensional variable space and plotted the
observations.

Applying PCA to X yields a set of m principal components.
The first principal component (e.g., PC1 in Figure 2a) captures
the variance of the data to the greatest degree possible on a
single axis. The next principal components (PC2 to PCm) then
each captures the maximum variance among the remaining
orthogonal directions. Variance measures how far a data set is
spread out, which provides us a general idea of the spread of
the data [30]. Each observation (a dot in Figure 2a) may now
be projected onto the PCs to obtain a coordinate value along
with each PC-line. This new coordinate value is known as the
PCA score [31].

In this way, we can identify the first (k − 1) principal
components and conclude that the kth principal component
corresponds to the maximum variance of the residual. The
difference between the original data and the data mapped onto
the first (k − 1) principal axes is called the residual [32].
Here, k is the number of dimensions required to capture at
least n% of the variance in data [33], [34]. Therefore, in
the case of abnormal items detection, where these items are
assumed to be rare, PCA can capture the dominant items
and construct a (k − 1)-dimensional normal subspace Sd.
The remaining dimensions construct the abnormal subspace
Sa. The abnormal items can be identified by calculating the
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(a) First two PCs in a plane (b) A sample data set T (c) Score plot of PC1 and PC2 (d) Loading plot of PC1 and PC2

Figure 2. Principle Component Analysis

distance of each item form the normal subspace. The item with
the longest distance from Sd is marked as an abnormal item.

An example. Figure 2b shows an example of applying PCA
to an example of dataset T . The dataset has five features and
10 observations, which represents food consumption habit of
people from different countries. Each data point in the table
represents the percentage of the population in a country, who
eat a specific kind of food. After applying PCA to T , we
find that the first two principal components (PCs) can explain
almost 85% of the data variance. Hence, k is set to 2, which
divides the original data set into (k − 1) normal sub-spaces
and the rest as abnormal sub-spaces.

When plotting the PCA score vector for the example of
Figure 2b, data points that are correlated are placed together.
Figure 2c shows that countries from the same regions are
grouped together. This is because people in the same region eat
the same kind of food. On the other hand, the country inside
the red circle, which is far from the other countries, and has
the longest distance from the first PC, indicates that it has a
distinct food consumption criteria (i.e., an “abnormal” item).
Likewise, we can find the correlation between the features
(e.g., rice, bread, etc.) by plotting the loading vector of the
first two PCs. The loading vector contains the data in a rotated
coordinate [35]. Features contributing similar information are
grouped together, which means they are correlated. In this
example, the feature, seafood separates the country Stika from
the other countries. This country is characterized as having a
high consumption of seafood. Therefore, we can conclude that
Stika, which is the farthest country from the normal subspace
in Figure 2c, has some rare kind of food habit. By observing
the loading plot 2d, we can identify that, the feature seafood
has the strongest impact to make Stika’s food consumption
criteria rare.

III. SCMINER APPROACH

Figure 3 provides an overview of SCMiner. It consists
of two major steps: 1) Identifying abnormal system call
sequences; 2) Mapping abnormal sequences into a ranked
list of buggy functions. To carry out the first step, SCMiner
processes the system call trace into trace segments that are
suitable for PCA by using filtering and a set of optimization
techniques. It uses PCA to identify a set of potential abnormal
inter-process system call sequences. To map these sequences

into the application’s functions, SCMiner performs dynamic
analysis outside the production environment to extract func-
tion signatures, where each function signature indicates the
frequently executed system call sequences within that function.
It then uses function signatures to match against the abnormal
system call sequences to identify and rank a list of functions
that are likely to be the root cause of the system-level
concurrency failure.

A. Identifying Abnormal System Call Sequences

Algorithm in Figure 4 shows the steps of identifying ab-
normal system call sequences. The input to the algorithm
includes a set of system call traces T collected by built-in
tools, such as linux auditd daemon [19]. The output is a set
of potential abnormal system call sequences Seqa. SCMiner
first merges the traces into a single trace according to their
timestamps in ascending order. It then extracts information
that is relevant to system-level concurrency faults from the raw
system call traces (Line 4). Next, it groups related system calls
from the extracted information to construct feature vectors,
i.e., a data table, for PCA (Lines 5-9). Specifically, SCMiner
splits the trace into segments (Line 5), where the segments are
expected to contain similar program behaviors (i.e., handling
an HTTP request), so system calls grouped into each segment
are intrinsically determined by program logic. SCMiner then
encodes the feature vector by generating a set of system call
sequences from each segment and counting their appearance
(Lines 6-9). Next, we apply PCA to analyze the feature vectors
for finding the most uncommon segments (Line 10). Finally,
from those selected uncommon segments, SCMiner identifies
the unique system call sequences, which describe the data
points that deviate from the others.

1) Extracting Relevant System Calls: Since our target is
diagnosing system-level concurrency failures, we need to
identify system calls and their associated processes that can
potentially lead to system-level concurrency failures. As dis-
cussed in Section II-A, system-level concurrency faults are due
to incorrectly shared resource accesses between processes, so
a system call s is considered “relevant” if its associated shared
resource (passed as a parameter) is accessed by at least one
other process that is different from the one associated with s.

In addition, the execve system call is always considered
to be relevant because it indicates the start of the execution
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Figure 3. The overview of SCMiner framework

Abnormal System Call Identification Algorithm

1: Inputs: T
2: Outputs: Seqa
3: begin
4: TR ← ExtractTrace (T )
5: Seg ← CreateSegments (TR)
6: for each segi ∈ Seg
7: Listseqi ← GenerateSequences (segi)
8: PV ector.update (Listseqi )
9: endfor
10: PC ← ComputePCA (Seg, PV ector)
11: Seqa ←IdentifyAbnormalSeq (PC)
12: return Seqa

Figure 4. Identifying abnormal system call sequences

of a program, which will be used to build feature vectors
for PCA. Therefore, SCMiner iterates through all system call
entries in the traces and retain only relevant system calls. Our
observation on 19 real-world Linux applications shows that,
on average, only 23% (Column NOSf of Table III) system
calls are relevant. In the example of Figure 1, the system calls
related to bash are retained for further analysis.

2) PCA-Based Anomaly Detection: We use principal com-
ponent analysis (PCA) – an unsupervised learning approach
to identify abnormal system call sequences from the relevant
traces. We use unsupervised learning because it does not
require manually labeling the data to build training sets, which
needs extensive manual effort and the large training data is
sometimes difficult to obtain in the production environment.
The key idea of using PCA in our context is to discover the sta-
tistically dominant system call segments and thereby detect the
rare segments, as well as the abnormal system call sequences
(i.e., outliers ) inside rare segments. The insight behind using
PCA is that we observe low effective dimensionality in the
data table, where each row (i.e., dimension) is a system call
segment corresponding to a certain program behavior (e.g.,
an HTTP request) and each column is a candidate abnormal
system call sequence.

Representing system call traces. We need to convert the trace
containing relevant system calls to a numerical representation
suitable for applying PCA detector. The whole set of system
calls in the trace can be represented by an M*N matrix
(Section II-C). In SCMiner, each row (i.e., observation) in
the matrix corresponds to the trace segments by splitting the
traces. Each segment contains a set of consecutive system

calls describing a certain program behavior (e.g., processing
an HTTP request).

For each segment, SCMiner generates a set of system call
sequences with different lengths to create feature vectors,
where each index in the vector represents a system call
sequence and the corresponding value represents the number
of times the sequence appears in the segment.

Table I shows an example of the numerical representation
of a system call trace. Here, each row indicates a vector
representation of a trace segment. Each item in the vector is a
sequence of system calls, where a system call scsvn

indicates
system call sc accesses a shared resource sv from the process
ID n.

Identifying trace segments. SCMiner splits the extracted
system call traces into fine-grained segments of closely related
system calls. To do this, for each trace, SCMiner divides it
into a set of segments based on the execution system call
execv, where each segment begins with execv. The execv
is called when a new process starts and the first parameter
of execv is the execution command. The intuition is that
most segments go through similar program execution paths and
process interleaving patterns. This results in high correlation
and thus low intrinsic dimensionality, which is suitable for
applying PCA. For example, each time when the user issues
a command in bash, it will cause the execution to start
from main for triggering the execv system call. On the
other hand, the minority components may contain sequences
with interleaved system calls, which are the root causes of
concurrency fault. However, any bug can occur during the
transition from one process to another, which means the
execv system call may also present in the buggy system call
sequence. To make sure that this kind of system call sequence
is detected by our technique, we keep the last system call Ss

form the previous segment as the first system call of the new
segment.

Generating vector representations. SCMiner generates a
feature vector representation for each trace segment. Each item
(feature) in the vector is a system call sequence, which is
a candidate of the abnormal sequence. To generate a list of
features F for each vector, SCMiner first identifies sequences
of semantically related system calls according to the shared
resources. The intuition behind this is that most system-
level concurrency failures occur in the case of a particular
interleaving of system calls accessing a shared resource [36].
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The output of this step is a set of system sequences (Seqsv),
where system calls in each sequence access the same shared
resource.

Each sequence in Seqsv can still be long and may not be
helpful in understanding the bug. For example, in the Apache
[37] server bug, the length of sequence with respect to a
shared resource is 983. To reduce the size of the sequence
encoded as a feature in the vector, SCMiner utilizes the A-
priori candidate generation algorithm [38] to generate a set
of shorter sequences for each Ssv . Basically, the A-priori
candidate generation algorithm uses a lattice structure to
enumerate the list of all possible item-sets [39], resulting in
an overly expensive computational cost O(2N ), where N is
the number of system calls in Seqsv .

To minimize the number of system call sequences and
reduce the computational cost, SCMiner employs three op-
timization methods. First, the traditional A-priori algorithm
[38] exhaustively computes the short sequences regardless of
the orders of the system calls in each execution. However,
we need to consider the program execution flow and thus
keep only system call sequences actually appeared in the
trace. Therefore, the computational cost is reduced to O(N2).
For example, given a sequence {S1, S2, S3, S4} in Seqsv ,
our modified candidate generation algorithm will output six
instead of 16 sequences: {S1,S2}, {S1, S2, S3}, {S1, S2, S3},
{S2, S3}, {S2, S3, S4}, {S3, S4}. Each sequence is encoded
as a feature in the feature vector.

Second, SCMiner removes the system call sequences that
are not relevant to system-level concurrency bugs. Specifically,
a sequence is removed if both of them involve read access.

Third, we propose a sequence abstraction method to min-
imize the size of Seqsv and thus reduce the number of
short sequences generated by the A-priori algorithm. The key
idea is to detect system call sequences that are frequently
executed sequences in all Seqsvs and replace each frequent
sequence with a symbolic name. We use frequent pattern
mining algorithm [38] to obtain the frequent sequences. For
example, given Seqsv1 = {S1, S2, S3, S4} and Seqsv2 = {S2,
S3, S5}. Suppose {S1, S2} is a frequent pattern, it is replaced
with a symbolic name A. As a result, Seqsv1 = {S1, A, S4}
and Seqsv1 = {A, S5}.

In this case, the cost of candidate generation algorithm can
be reduced to O((N−P)2), where N is the number of system
calls and P is the number of frequent patterns. At the end of
the first phase, if an abnormal system call contains a symbolic
name, it will be replaced with the real system calls.

Ultimately, a feature vector is generated for each trace
segment, in which each item (or observation) corresponds to
a system call sequence extracted from the segment and the
value of the item indicates the number of times the sequence
appears in the segment. The size of the vector is the unique
number of system call sequences from all trace segments.
Applying PCA detector. We create a Feature Matrix D to
perform PCA, where each row corresponds to a feature vector
from a trace segment. In the example of Table I, each column
is a feature (i.e., candidate system call sequence) and each

Table I
AN NUMERICAL REPRESENTATION OF A SYSTEM CALL TRACE

<openf2 , readf2> < writef2 , openf2 > <readf2 , writef2 , statf2>.
1 0 2 .
... ... ...

Figure 5. Variance plot and biplot of PCA on bash traces

row is an observation (i.e., trace segment). PCA finds a low-
dimensional representation of the Matrix D that contains as
much as possible of the variation [40].

In our benchmark programs, even though there are 200
segments on average, we found that 85% of the variance can
be captured by five principal components on average which
shows the low effective dimensionality in the feature metrics
of our benchmarks. For our feature vector, each dimension
corresponds to a certain execution sequence in the program.
As the execution sequences are determined by the program
logic, the sequences in a group are correlated. In the passing
executions, it is natural that we find most of the sequences to
be highly correlated with each other. For example, Figure 5
(left one) shows the plot of the variances (y-axis) associated
with the PCs (x-axis). This indicates that only 5 principle
components can capture 86% variance [30] of the data of bash
program which have 184 segments and 924 unique system call
sequences. The plot in the right side of the figure 5 represents
both the PCA score and loading in the normal subspace Sd and
in the abnormal subspace Sa. This plot indicates that segment
“4” has a significantly different score than the other segments
and has the longest distance from the normal subspace. Thus,
we can separate this segment from the other data points.
We then calculate the distances of the features and select
the unique features of segment 4 and obtain 38 system call
sequences. Furthermore, these features are less co-related with
the other features and mostly co-related with each other.

3) Finalize Abnormal System Call Sequences: With the
help of PCA, we isolate the anomalous system call sequences
and after that, we prepare different sets of them. In order to
prepare the sets, we identify the shortest unique system call
sequences first. Then, sort out the supersets of a system call
sequence and group them all in the same set. In the same set,
the smallest system call sequence will be placed in the top.
If a system call sequence does not have any supersets, we
consider that sequence as a set.

For example, we have five system call sequences <P1P2P3,

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 29,2020 at 20:34:39 UTC from IEEE Xplore.  Restrictions apply. 



P1P8, P1, P4, P4P5>. These five sequences can be divided
into two different sets 1. <P1, P1P8, P1P2P3> and 2. <P4,
P4P5> . The top item of a set is the most frequent subset of
all system call sequences of that set.

B. Localizing Buggy Functions in Applications

Mapping an abnormal system call sequence to specific bug-
related application functions is challenging, especially when
the source code is not available. We propose to leverage
off-line profiling to associate application functions with the
abnormal system call sequences. Specifically, We obtain sys-
tem call traces using dynamic binary instrumentation outside
the production environment and match against the abnormal
sequence.

One challenge is that an offline execution trace is unlikely
to be exactly the same as the production trace due to envi-
ronmental inconsistencies, the unavailable inputs, or the non-
deterministic interleavings. To address this problem, SCMiner
proposes an offline function signature mapping method that
creates a signature for each function outside the production
environment. The signature is obtained by a set of closed fre-
quent system call sequences for each function across multiple
executions. Therefore, we can map the abnormal sequence
back to each function signature to determine the suspected
buggy function.

The benefits of using a signature are that we do not require
the exactly same inputs, environment, or workload to localize
the buggy functions. Since the mapping table is obtained
offline outside the production environment, it does not induce
production runtime overhead.

1) Extracting Offline Function Signatures: Given an abnor-
mal system call sequence, we obtain the processes contained
in the sequence as the process under debugging (PuDs). We
then use PIN [41], a dynamic binary instrumentation tool, to
instrument PuDs and execute them against a set of randomly
generated inputs multiple times. At the end of each execution,
we obtain a function execution list, where each entry in the list
contains system call numbers, resource ID, and the function
name associated with them.

Once all executions are finished, SCMiner groups all entries
for all function execution lists by the same function and
the same process name together. Next, SCMiner extracts the
function signature, which is the maximal frequent system call
sequence, from each group. The signature can characterize the
behavior of a function. For example, suppose there are three
function execution lists for a function f in application A is:
<open, write, close>, <stat, open, read>, and <lstat, open,
write, close>. The function signature of f with respect to R
(the minimum support) is <open, write, close> because it is
the maximal frequent system call sequence [42].

2) Identifying and Ranking Buggy Functions.: Algorithm in
Figure 6 shows the steps of localizing bug-related functions.
SCMiner takes as input the offline function signatures (SIGA)
for PuDs and one item set of the abnormal system call
sequences SCab. It outputs a list of top N ranked application

Buggy Function Identification Algorithm

1: Inputs: SCab, SIGA

2: Outputs: Fbug

3: begin
4: for each sc in ordered SCab

5: for each scA in sc
6: Rm ← SIGA.match (scA)
7: Fbug .add(scA, Rm)
8: endfor
9: Fbug ← Fbug .rank()
10: endfor
11: return Fbug

Figure 6. Algorithm for locating the buggy sequence in the buggy function

functions Fbug that are likely to contain bugs. Each function
in Fbug is associated with a ranking score.

Specifically, SCMiner iterates through SCab, beginning with
the top-ranked system abnormal call sequence, and for each
found sequence sc, SCMiner extracts the system calls sharing
the same application name into an application-specific system
call sequence scA. For example, in a sc = <write, read,
write>, suppose the two writes are from the same function f1
and the read is from function f2, then scf1 = <write, write>
and scf2 = <read>. Specifically, SCMiner treats each scA in
application A from sc as a query and searches scA against all
function signatures in A. The search problem is formulated
as the the longest common sub-string matching problem. The
matching score Rm is determined by the percentage of the
matched system calls in each function signature. For example,
suppose there are three function signatures F1: <stat, read,
write >, F2: < unlink, rename, read >, and F3: <read, write>.
The abnormal system sequence scA is <read, write>. When
matching scA against the three functions, the scores are 2/3,
1/3, and, 1. Therefore, F3 is ranked at the top.

IV. EXPERIMENTS

We developed SCMiner as a software tool based on several
open-source platforms. Specifically, we used a Linux built-
in audit daemon auditd [19] to collect system traces. Our
abnormal system call sequence identification algorithm is
implemented by SPMF [43], an open source data mining tool
and Principle Component Analysis (PCA) library defined in
R programming language [44]. The offline trace collection in
fault localization is implemented by PIN [41].

In order to evaluate SCMiner, we consider three research
questions:
RQ1: How effective is SCMiner at localizing abnormal system
call sequences and buggy functions?
RQ2: How efficient is SCMiner at localizing abnormal system
call sequences and buggy functions?
RQ3: What are the roles of PCA optimization and signature
function matching in improving the effectiveness and the
efficiency of SCMiner?

A. Benchmarks and Evaluation Metrics

All our benchmarks are real Linux applications with known
concurrency failures due to incorrectly shared resources be-
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Table II
BENCHMARK, DESCRIPTION AND RESOURCE INFORMATION OF THE FAILURES

Application NLOC NOF Bug ID Bug Description NOP NOR NOSR NOS
mv 7,002 77 Bugzilla-438076 another process terminates (“file is missing”) 96 148 8 413,345
rm 5525 76 Bugzilla-1211300 rm terminates (“directory not empty”) 234 165 6 762,104
mkdir 4,213 26 Debian-304556 file permission mode is modified 68 144 6 576,210
mknod 3,840 26 Debian-304556 file permission mode is modified 72 177 6 606,628
mkfifo 3,959 26 Debian-304556 file permission mode is modified 64 139 6 534,983
ln 3,890 81 Debian-357140 ln terminates (“file does not exist”) 115 251 8 588,233
tail 4,492 104 Changelog output not updated after attached process exits 193 242 12 680,640
chmod 3,983 57 GNU-11108 file permission mode is modified 56 79 6 277,520
pxz 370 5 Bugzilla-1182024 file permission mode is modified 79 134 6 327,402
cp1 4,010 70 Changelog file permission mode is modified 148 269 8 685,872
cp2 4,132 70 Changelog Directory creates fails(“directory exists”) 161 268 6 417,944
gzip 7,252 35 Debian-303927 file permission mode is modified 112 232 8 831,420
bzip2 9,263 136 Debian-303300 file permission mode is modified 84 110 8 457,884
bash 39,102 456 Debian-283702 corrupted history file 287 424 31 3,059,987
findutils 32538 271 Debian 67782 new database would be empty 292 342 26 916,842
lighttpd-1 37,919 883 Lighttpd-2217 http timeout 264 284 18 4,356,560
lighttpd-2 41,292 927 Lighttpd-2542 incorrect output 296 438 21 1,264,552
apache 195,005 5665 Apache -43696 server shutdown command is ignored 534 2529 29 3,629,040
locate 32,538 271 Debian 461585 File is missing 284 367 17 894,480

NLOC = the number of non-comment lines of code. NOF = the number of functions. NOP = the number of processes. NOR = the
number of unique system-wide resources accessed by the system calls in the log. NOSR = the number of unique system-wide shared
resources accessed by the system calls in the log. NOS = the number of system calls.

tween processes and/or signal handlers. These benchmarks are
identified by searches from open-source repositories such as
GNU, Bugzilla, and Debian. There are 19 program versions
from 17 unique applications, among which 12 applications
were from Linux Coreutils. To minimize bias, searches from
these open-source repositories are conducted by a student who
is not involved in the SCMiner project. These benchmarks
have been used in other research [18], [45] for handling
process-level concurrency bugs. The total number of bench-
marks in this experiment is also comparable with prior work.

The student collected a system call trace for each benchmark
by running multiple test cases multiple times and at least one
execution can trigger the failure described in the bug report.
The offline traces are collected by running a set of black-
box (or functional) test cases to mimic the production runs
against different input scenarios. The black-box test cases are
often designed based on system parameters and knowledge of
functionality [46]. The student followed this approach, using
the category-partition method [47], which employs a Test
Specification Language (TSL) to encode choices of parameters
and environmental conditions that affect system operations and
combine them into test cases. However, we did not know the
root causes of these failures until we finished running and
analyzing the results of SCMiner. Table II shows the statistics
for each benchmark. The last column indicates the size of the
system call traces.
B. Evaluation Metrics

Identifying abnormal system call sequences. To evaluate the
effectiveness of abnormal system call sequence identification,
we use the measurement of precision [48]. Precision represents
the percentage of the ground truth (i.e., the actual abnormal)
system call sequences from the system call sequence generated
by our technique. To determine the ground truth, we manually
examined the solution discussed in the corresponding issue
report and the patch used for fixing the issue.

Localizing buggy functions. SCMiner reports top-N func-
tions that are likely to be buggy and by default, N=20. In
order to assess the effectiveness of localizing buggy functions,
we measure two metrics. The first metric measures the rank
number (position) of functions identified as bug-related. Again,
the ground truths are determined by manually examining the
solution discussed in the corresponding issue report and the
patch used for fixing the issue.

For the second metric, we use Mean Average Precision
(MAP). MAP is a single-figure measure of ranked retrieval
results independent of the size of the top list [49]. It is designed
for general ranked retrieval problems, where a query can
have multiple relevant documents (e.g., an abnormal system
call sequence may associate with more than one function),
we compute the average ranking. To compute MAP, it first
calculates the average precision (AP) for each individual query
Qi, and then calculates the mean of APs on the set of queries:

MAP = 1
|Q| ·

∑

Qi∈Q

AP(Qi)

To illustrate the MAP calculation, suppose there are bug-
related functions f1 and f2 If Technique-I ranks the two
options at the 1st and 2nd positions among all 500 functions
and Technique-II ranks the two functions at the 1st and 3rd

positions, then the MAP of Technique-I is (1/1 + 2/2) / 2 = 1
and the MAP of Technique-II is (1/1 + 2/3) / 2 = 0.8.

C. Results and Analysis

Table III summarizes the results of applying SCMiner to the
benchmark programs. The results showed that 83% of system
calls were removed after the filtering process. Column SCseq

shows the abnormal system call sequence, in the format of
SystemCallprocess. Column Func shows the function names
associated with the abnormal system call sequence.
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Table III
RESULTS OF APPLYING SCMINER OVER BENCHMARK APPLICATIONS

Prog NOSf #Seg. #Ftr. Syscall seq. Func.Location Root Cause Time
Seq. prec. Rank MAP SCseq Func (sec)

mv 19260 189 223 1 100 1,2 1 unlinkmv , opencat, renamemv mv: copy internal(), cat: main() 15.74
rm 23080 184 640 1 100 1,3,4 0.81 fstatatrm, symlinkln, opentatrm rm: fts open(), fts build(), ln: do link() 29.083
mkdir 7920 135 35 1 100 1,2 1 mkdirmkdir , symlinkln, chmodmkdir mkdir: main(), ln: do link() 19.42
mknod 7209 148 55 1 100 1,2 1 mknodmknod, symlinkln, chmodmknod mknod: main(), ln: do link() 23.89
mkfifo 7200 148 55 1 100 1,2 1 mknodmkfifo, symlinkln,chmodmkfifo mkfifo: main(), ln: do link() 21.857
ln 5376 187 36 1 100 1,2 1 statln, unlinkrm symlinkln ln: do link(), rm: remove entry() 16.69
tail 21600 200 120 2 100 1,3,4 0.8 readtail, renamemv , fstattail tail: tail forever inotify(), dump reminder(), mv: copy internal() 22.302
chmod 4278 179 21 1 100 1,2,3 1 statchmod, symlinkln, fchmodatchmod chmod: fts open(), main(), ln: do link() 9.86
pxz 30803 181 171 2 79.74 1,2 1 umaskpxz , symlinkln, chmodpxz pxz: main(), ln: do link() 31.112
cp1 9446 190 74 2 100 2,3 0.58 mkdircp, fchmodchmod, statcp cp1: copy internal() chmod: main() 20.28
cp2 16728 190 105 2 75 2,3 0.58 statcp, mkdirmkdir , mkdircp cp2: copy internal(), mkdir: main() 27.78
gzip 10560 190 153 2 100 1,2 1 closegzip, symlinkln, chmodgzip gzip: treat file(), ln: do link() 19.97
bzip2 16665 200 190 1 100 1,2 1 closebzip2, symlinkln, chmodbzip2 bzip2: compressStream(), compress(), ln: do link() 29.76
bash 236096 174 924 2 100 1 1 openbash1, writebash2, writebash1 bash: history do write() 208.999
findutils 150967 180 843 1 100 1,2 1 unlinkmv , opentatrm, renamemv mv: copy internal(), rm: rm() 61.52
lighttpd-1 731663 398 3240 4 78.28 1,4 0.75 exitcgi, rt sigreturnlight, waitlight lighttpd: fdevent event del() 230.45
lighttpd-2 293367 292 1711 2 66.67 1,2,4 0.92 closelight, waitcgi, waitlight lighttpd: fdevent unregister(), plugins call handle subrequest 178.32
apache 1661990 320 56953 3 100 2,3 0.58 rt sigpromaskhttpd, rt sigactionbash apache: ap mpm run(), bash: set signal handler() 273.62
locate 144824 186 427 1 100 1,2 1 unlinkmv , fchmodatchmod, renamemv mv: copy internal(), chmod: fts open() 53.63

NOSf = the number of system calls after filtering. #Seg. = the number of segments. #Ftr. = the number of features (system call sequences). #Seq = the
number of abnormal sequence sets. Rank = the ranking position of the ground truth. MAP = the MAP score. SCseq = the abnormal system call sequence.
Func = the buggy functions. Time = the time spent on the analysis.

1) RQ1: Effectiveness of SCMiner: SCMiner is successful
in finding abnormal system call sequences and bug-related
functions in all 19 programs. The number of abnormal system
call sequences computed by SCMiner ranged from 1 to 4.
The size of each system call sequence ranged from 2 to 4
across all applications. Given the total number of system calls
in the trace (Column “NOS” in Table II), the results indicate
that developers only need to examine from 0.01% to 0.04%
system calls among all system calls in the trace, with an
average of 0.02%. The results also show that the identification
of the buggy system call sequence is 66.67% to 100% precise
(Column “prec.” in Table III), with an average of 93% for
all benchmark applications. In addition, SCMiner successfully
localized buggy functions in all 19 applications. The average
ranking position is 1.3 overall applications. The “rank” column
contains multiple ranks because we have multiple ground-
truth functions. The MAP score ranged from 0.58 to 1, with
an average of 0.79. The MAP score indicates that all buggy
functions identified SCMiner are ranked at the top-5. Given
the total number of functions in a program (Column “NOF” in
Table II), developers are required to examine at most 0.04% to
20% of all functions across all applications, with an average
of 5%.

We conclude that SCMiner is effective at detecting abnormal
system call sequences and localizing buggy functions with
respect to system-level concurrency failures in production.

2) RQ2: Efficiency of SCMiner: The last column of Table
III reports the end-to-end total run time of SCMiner, including
filtering, PCA analysis, optimization, and buggy function
localization. The overhead of collecting system call traces by
the auditd daemon is almost negligible, ranging from zero to
2X, with an average of 0.31X overall applications.

For the binary instrumentation used to localize buggy
functions, the overhead ranged from 1.3X to 36X, with an

average of 8.5X. These overheads are in the similar order of
magnitude as that of other profilers [50], [51]. We consider
these overheads to be acceptable for out-of-production usage,
which is the intended usage of collecting function signatures.

The above results indicate that SCMiner is efficient and
practical for being used for localizing system-level concur-
rency faults.

3) RQ3: The Role of Optimization and Function Signature:
To evaluate the role of the optimization techniques used in
finding abnormal system calls (i.e., removing irrelevant sys-
tem calls, sequence abstraction), we computed the total time
of SCMiner without optimization, denoted by SCMinernop.
Figure 7 shows the time spent by SCMiner and SCMinernop,
respectively. Compared to SCMinernop, SCMiner is 1.5 times
faster on average in terms of the end-to-end analysis time
across all applications. The speedup is more significant in
larger applications (e.g., bash, apache). This is primarily
because the optimization reduced the size of feature vectors
used for PCA, reduced the overall number of system call se-
quences, and thus also reduced the time of searching frequent
system call sequences in the source code. Overall, these results
indicate that the use of optimization techniques contributed to
enhancing the efficiency of SCMiner.

To evaluate whether the use of function signatures can
improve the effectiveness of identifying buggy functions, we
use a baseline version SCMinernfs to compare with SCMiner.
SCMinernfs does not compute function signatures. Instead,
it collects a single trace outside the production environment
and then uses a simple exact string matching approach [52]
to determine if an abnormal system call belongs to certain
functions. For example, a system call from the buggy sequence
is considered as a query and will be searched in the system
call sequence of the single execution trace. Figure 8 shows the
MAP scores of both SCMiner and SCMinernfs across the 19
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Figure 7. Comparing the time taken by SCMiner and SCMinernop

Figure 8. Comparing the effectiveness of SCMiner and SCMinernfs

applications. The results show that the use of function signa-
ture increased the effectiveness of SCMiner in 16 applications,
ranging from 0.3% to 100%, with an average of 44%. On the
bash program, we observed a 100% improvement because
the buggy function was not ranked in the top 20 functions by
SCMinernfs.

The above results indicate that the function signature tech-
nique is more effective in localizing buggy functions than a
simple string matching approach.

V. LIMITATIONS AND DICUSSION

A. Limitations

SCMiner assumes each logged system call contains suf-
ficient information on resources being accessed. SCMiner
may not process logs, in which resource information is not
available in each system call. Second, function signatures are
collected from the execution traces. Therefore, the accuracy
of the signatures largely depend on the quality of inputs.
Existing automated test case generation techniques [47] can be
leveraged to cover as many functions as possible for improving
the quality of traces.

B. Discussion

Quality of traces. We investigated how the quality of system
call traces influence the effectiveness of SCMiner. We varied
the percentage of the passing and failing executions in the
log under analysis. As shown in Figure 9, the x-axis indicates

Figure 9. Precision changes with the content of traces.

Figure 10. Precision changes with the size of traces.

the ratio of the percentage of passing and failing executions
and the y-axis indicates the precision scores of SCMiner in
detecting abnormal system call sequences. For example, the
ratio score 9 means, there are 90% passing executions and 10%
failing executions. The precision score is 0% when the buggy
sequence cannot be captured by SCMiner and it happens when
the failing executions occupy a large percentage than the
passing executions. These results show that there is a trend
when the ratio between the passing and failing executions
increases, the precision increases. The precision score reaches
its peak for all applications when the percentage of passing
executions is about 90%.

The above results indicate that SCMiner is most useful when
the number of normal system call sequences is a dominant
majority in the trace and they appear frequently. This is due
to the PCA algorithm used in the approach.

Scalability. We further examined the effectiveness and effi-
ciency of SCMiner when handling system call traces with
different sizes. In addition to the original traces, we consider
two variations of the original traces generated from the 19
applications: 1) small-size trace and 2) large-size trace. To
create small-size traces, we removed 50% of executions from
each original trace. To create large-size traces, we added an
additional 50% of executions to each original trace.

Figure 10 plots the precision scores of SCMiner. The
results indicate that precision varied on all applications when
changing the size of the trace from “small” to “original”.
On all applications, the precision scores generally remain
the same when the trace size is increased from “original” to
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Figure 11. Time changes with the size of traces.

“large”. Figure 11 plots the efficiency. The results indicate that
compared to the original traces, the time spent on analyzing
small traces was 88% (7.30 seconds on average) less and
that on analyzing large traces was 53% (104.24 seconds on
average) more.

The above results imply that SCMiner is able to handle
large-size traces with little extra cost.

VI. RELATED WORK

Fault localization for concurrent programs. There has
been a lot of work on fault localization for concurrent pro-
grams [6], [16], [53]. For example, Park et al. [6] monitor
memory-access patterns associated with a program’s pass/fail
results. Wang et al. [15] identify shared memory access pairs
that behave distinctively in failed and successful runs, and
pinpoint root causes using different test procedures. This
technique targets order violations and does not rank concur-
rency violation patterns. CCI [13] ranks only shared variable
accesses (predicates) and thus provides less contextual infor-
mation. However, these techniques assume multiple failing
and passing executions, which are often hard to obtain in
practice. In addition, they require instrumenting memory ac-
cesses and thus are intended to work outside of the production
environment. In contrast, SCMiner is a production-level fault
localization tool that uses system-generated system call traces
with little overhead. In addition, SCMiner assumes that failing
executions happen more rarely than normal executions, which
is a practical assumption in the production environment.

Process-level concurrency failures. RacePro [11] leverages
the vector-clocks algorithm to detect a process-level race if
it happens during test execution. It tracks the accesses of
shared kernel resources via system calls and records exe-
cutions of multiple processes. SimRacer [18] and RacePro
[11] aim to detect process-level concurrency faults by testing
for different interleavings of system calls. Descry [17] can
reproduce system-level concurrency failures by combining
static and dynamic analysis techniques to generate test inputs.
[11] However, all of these techniques have different goals from
SCMiner; none of them focus on detecting abnormal system
calls from traces or localizing buggy functions.

Anomaly detection from runtime logs. There has been
some research on detecting anomalies [33], [54], [55] from
logs. For example, Xu et al. [33], [54] mine console logs and
identify the abnormal log message patterns. Liu et al. [55]
and Du et al. [56] analyze the characteristics of system logs

to identify the abnormal behaviors of a system that are caused
by attacks. Lakhina et al. [32] use PCA anomaly detection
algorithm to diagnose network-wide traffic anomalies. This
method uses Principal Component Analysis to identify an
anomalous subspace of the network traffic which is noisier and
contains significant traffic spikes. In contrast, SCMiner focuses
on finding system call sequences for diagnosing system-level
concurrency faults. Moreover, SCMiner can pinpoint the root
causes of failures associated with abnormal system calls.

VII. CONCLUSIONS

We have presented SCMiner, the first automated tool to
diagnose system-level concurrency failures in multi-process
applications. SCMiner can detect abnormal system call se-
quences from the traces generated by the default system
auditd daemon by using a combination of dynamic analysis,
data mining, and statistical analysis techniques. SCMiner can
also localize buggy application functions associated with the
abnormal system call traces. We have evaluated SCMiner on
19 real-world multi-process applications. The results showed
that SCMiner is both effective and efficient in diagnosing
system-level concurrency failures.
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